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The steady flow in and around a deformable liquid sphere moving in an un- 
bounded viscous parabolic flow and subject to an external body force is calculated 
for small values of the ratio of the Weber number to the Reynolds number in the 
creeping-flow regime. It is found that, in addition to the drag force, the drop 
experiences a force orthogonal to  the undisturbed flow direction. When the 
body force is absent (neutrally buoyant drop), this lift force tends to drive the 
drop inwards to the axis, where the undisturbed flow velocity is maximum, i.e., 
towards a position of lower velocity gradient. In  the case for which the parabolic 
flow profile is a Poiseuille flow profile, the lift force is given by the expression 

Here a is the radius of the undeformed sphere, R, is the radial distance from 
the position of maximum undisturbed flow U, at the profile axis to the position 
of zero flow, E is the ratio of the Weber number to the Reynolds number, given 
by E = pU,T-l, where ,u is the external fluid viscosity and T is the surface tension 
of the drop, a is the ratio of the drop and external fluid viscosities, b is the radial 
vector from the flow axis to the centre of mass of the drop, and P is a function of 
a and a dimensionless parameter dependent on the body force that is determined 
in the analysis. Reasonable agreement is found between the observations by 
Goldsmith & Mason (1962) of the axial drift of liquid drops in Poiseuille flow and 
the predictions of the theory herein. 

1. Introduction 
We show that a deformable liquid sphere moving in an unbounded steady 

parabolic flow experiences a force orthogonal to its direction of motion, i.e. a 
life force, arising out of the interaction between the incident flow and the sphere 
deformation. Since we calculate the lift without taking into account inertial 
effects, our results are presumed to be valid for creeping flow. Our theoretical 
results are compared with the observations of Goldsmith & Mason (1962) on the 
radial migration of deformingdrops in fluid flow in right circular cylindrical tubes, 
e.g. Poiseuille flow. 
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Motivation for the present study arose from the observations of axial accumu- 
lation of red blood cells in blood flowing through small arteries in the circulatory 
system. Evidence for this is the absence of red cells from a small region near the 
arterial wall, the so-called plasmatic zone. This effect is generally believed to be 
associated with a dynamical change in concentration of the red blood cells due to 
radial migration. The belief that red-cell migration is a purely hydromechanical 
effect is based in part on understanding of the dynamics of a rigid sphere in tube 
flow, and is the principal reason for likening a red cell to such a particle (Rubinow 
1964). The effect of a decrease in apparent Mood viscosity with an increase in 
bulk flow rate has been correlated with the degree of migration of particles in 
tube flow (Segre & Silberberg 1963). Moreover, the fact that a red blood cell is 
highly deformable in vivo (see Whitmore 1963) and has a viscous interior (Fung 
1966) suggests that the dynamics of a deformable liquid sphere may provide 
better insight into the behaviour of a red cell. 

The radial migration of a single spherical particle across the streamlines of a 
Poiseuille flow in a tube cannot be explained on the basis of Stokes’ equations, 
even in the presence of the bounding walls; i.e. a sphere experiences no transverse 
force a t  zero Reynolds number. A transverse force does exist theoretically if 
inertial forces are taken into account (Rubinow & Keller 1961; Bjorklund 1965; 
Saffman 1965; Cox & Brenner 1968). However, the situation is different for 
flexible particles. The experimental observations of Goldsmith & Mason (1962), 
Karnis, Goldsmith & Mason (1963) and Karnis & Mason (1967) reveal that a t  
low Reynolds numbers, even when a rigid sphere experiences a negligible trans- 
verse force, neutrally buoyant deforming cirops (and flexible solid particles) 
migrate rapidly to the tube axis. It is reasonable to suppose, therefore, that the 
radial force producing axial migration of the deforming drops arises from the 
interaction between the drop deformation and the flow field around the drop, 
rather than from an inertial effect. Therefore, the force should be computable 
solely on the basis of the Stokes equations. 

Chaffey, Brenner & Mason (1965,1967) considered the problem of a deformable 
liquid sphere in Couette-Stokes flow. Assuming the drop to  be ‘close’ to the 
plane wall bounding the flow, they found that the effect on the deformed drop 
was to produce a force tending to push the drop away from the wall. This force 
has two failings when used alone as a basis for explaining the inward migration 
of drops in Poiseuille flow. First, it neglects the force due to the interaction of the 
parabolic flow with the resultant deformation of the drop calculated herein. 
Second, it cannot be expected to be valid when the drop is not close to the wall. 
I n  fact, Karnis & Mason (1967) have shown experimentally that the migration 
rates calculated by Chaffey et al. are significantly larger than those which are 
observed. The experimental observations were recorded at a considerable dis- 
tance from the tube walls relative to the particle size. For such observations, one 
might expect the effect of the unbounded parabolic flow profile to be more im- 
portant than any perturbations introduced into the flow by proper consideration 
of the effect of the walls. 

It is the purpose of this work to calculate the hydrodynamic viscous transverse 
force experienced by a deformable liquid sphere in an unbounded parabolic flow, 
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subject to an external body force. Our results are obtained by solving the Stokes 
equations for the motion of the liquids inside and outside the drop. In  $ 2 ,  the 
problem is formulated in general. In  Q 3, a small perturbation procedure (see also 
Cox 1969) is presented which specifies the boundary conditions for the slightly 
perturbed sphere surface in terms of known fields on the undeformed sphere sur- 
face. This method is then used in $ 4  to compute the flow in and around a drop in a 
parabolic profile by making use of the knownsolutions for spherical dropsin steady 
uniform streams, linear shear flows and quadratic shear flows, respectively. 

The resultant lift on the drop is calculated in $ 5. Our result for the lift force is in 
significant quantitative disagreement with a similar calculation of the lift force 
performed by Haber & Hetsroni (1971). The small perturbation expansions used 
by us explicitly and by Haber & Hetsroni implicitly are apparently the same, to 
order 8. The deformation of the drop which is a consequence of the zero-order 
flow solution is also the same in both calculations. 

The essential difference in procedure appears to be in the application of the 
‘natural’ boundary conditions, equations (2.3) and (2.4), which must be applied 
a t  the surface of the deformed drop. Assuming the deformation of the drop to be 
small, these conditions are applied by us directly to the perturbed first-order 
flow and pressure fields. We relate the natural co-ordinate system fixed to the 
drop surface, through a small rotation, to a spherical co-ordinate system whose 
origin is fixed at  the centroid of the drop. This small rotation is defined with the 
aid of two Eulerian angles, which are expressed in terms of the deformation of the 

By contrast, Haber & Hetsroni did not find it convenient to deal with the 
boundary conditions directly, but instead used a presumably equivalent set of 
boundary conditions. In  place of continuity of the tangential velocity and stress, 
they required continuity of the velocity and stress acted on by various vector 
operators. One consequence of this difference is that our expressions for the boun- 
dary conditions on the order-€ flow field in terms of the vector components of the 
flow field cannot be compared with any corresponding expressions in their work. 
We are in fact only able to compare the final resulting lift force. 

The validity andinterpretation of the results for very viscous drops are discussed 
( Q  6). Somenewresults concerning the flowpastrigidbodies are deduced. The small 
deformation of a very viscous drop on which tensile forces can be neglected was 
first investigated by Taylor (1934) in the case of an incident linear shear flow. 
His result for the deformation is different from the deformation calculated here, 
which is based on the assumption that interfacial tensile forces are large com- 
pared with viscous forces. This difference has undoubtedly contributed to 
the misapprehension that it is never permissible to let the viscosity of the 
fluid inside the drop approach infinihy, when using such a small perturbation 
expansion. 

The resultant trajectory of the drop is obtained ($ 7), and comparison is made 
($8) with the observations of Goldsmith & Mason (1962) of neutrally buoyant 
liquid drops in a Poiseuille flow in a tube. The justification for comparing our 
theoretical results for the force in an unbounded parabolic flow with that in flow 
in a tube is based on the following considerations. It may be expected that the 

drop. 
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forces on deformable particles in unbounded parabolic flow which coincides with a 
Poiseuille flow profile in the region of positive flow are a good approximation 
to the forces on such particles in actual tube flow when the particles are far from 
the wall, so that the ‘wall effect’ is negligible. By ‘wall effect’, we mean the 
secondary effect of the wall on the perturbed flow produced by the drop, and not 
the initial effect of the wall in producing the Poiseuille flow in the absence of the 
drop. Thus, it is expected that the theory is valid when the distance of the drop 
from the wall is large compared with the ‘size’ of the drop. A necessary condition 
for this criterion is that the tube radius is large compared with the radius of the 
drop. 

Haber & Hetsroni also calculated the trajectories for a drop in Poiseuille 
flow, on the basis of their derived force. They predicted that a neutrally buoyant 
drop would move radially outwards whereas such drops are seen to move radially 
inwards, in agreement with our results. These authors made an algebraic error 
in sign in deriving their trajectories, which invdidates their results. If this error 
were corrected, their theory would also predict an inward migration, but the 
magnitude would remain in serious quantitative disagreement with observa- 
tion. The trajectories predicted by the present theory for neutrally buoyant 
drops are in good agreement with the observatilons of Goldsmith & Mason (1962). 
This agreement lends support to our theoreticad results. 

2. Formulation 
We wish to consider the steady motion of a drop of viscous fluid suspended in 

another viscous fluid which possesses a steady velocity distribution U far from 
the drop. U is measured relative to a spherical co-ordinate system with its origin 
fixed at  the centroid of the drop, with the positive-x axis pointing in the direction 
of U. In  $4, we specialize U to be a parabolic flow, for example, a Poiseuille 
flow in a tube (see figure 1). It is assumed that there is a body force KO per unit 
volume acting on the drop in the positive-z direction. In  its quiescent state, the 
drop is spherical in shape and is maintained that way because of surface tension. 
The motion of the fluids causes in general a deformation of the drop away from its 
undisturbed, spherical shape. We shall assume that the fluid outside the drop is 
Newtonian, incompressible and viscous with viscosity p .  

We denote the velocity of the exterior fluid by v and the pressure by p .  All 
external lengths, velocities and stresses have been non-dimensionalized by a, 
Uo and ,uU,a-l, respectively, where a is the radius of the undeformed spherical 
drop and U, is a reference velocity to be specified later. The same quantities when 
referring to the interior of the fluid drop are designated with a prime. The 
equation of the surface of the drop in the deformed state is represented by 

where 8 and @ are angular co-ordinates of the spherical co-ordinate system. We 
shall assume that the fluids are immiscible, surface-active agents are absent 
and the (dimensional) surface tension T is constant. It is assumed that the flow is 
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FIUURE 1. Geometry of Poiseuille flow incident on spherical drop located a distance b from 
position of tube axis. The fixed co-ordinate system has its origin at the centroid of the drop. 
With respect to this co-ordinate system, the flow field a t  infinity is given by (4.2a). Note 
that @ is the angle in the x, y plane between the x axis and the vector p which is the pro- 
jection of r on the x, y plane. 

slow and that inertial effects are negligible, so that {v, }p and {v’,p’} satisfy the 
following linear equations and conditions: 

(2.2) 

(2.3) 

€7, = ea7k+a(1/R1+ l /B2)  a t  r = I +f(O, @), (2-4) 

where v, represents the normal velocity component, v, the tangential velocity 
vector, 7, the tangential stress vector, 7 ,  the magnitude of the normal stress, 
cc = ,u’,u-~, R, and R, are the two principal radii of curvature of the drop surface, 
and the non-dimensional parameter E = pU,T-l. Equation (2.4) is Laplace’s 
formula (see Landau & Lifshitz 1959, p. 233) for the equilibrium between the 
normal stresses across the surface and the tension and curvature of the surface. 

We seek the solution {v,p) and {v‘,p’) of (2.2)-(2.4) as expansions valid for 
small values of E ,  which are of the form 

i AV -Vp = 0, V . V  = 0, 
v = ( O , O ,  U) at r = 00, 

Av‘ - Vp’ = 0, V. v’ = 0, 

v, = vk = 0, v, = vi, T~ = at r = 1 +f(O, @), 

v’ bounded, 

v = V,+€V,+O(€), (2.5) 

p = P,o+%%+O(E),  (2.6) 

v’ = v;+sv;+o(E), (2.7) 

p’ = E-lpll+p;+Ep;+O(E). (2.8) 

The parameter a is permitted to be large so long as the deformation of the drop, as 
a consequence of (2.4), is small. We shall see that the term c1pL1 is needed in 
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order to satisfy condition (2.4). This supposition onp'  also ensures the validity 
of expansion (2.8) for large a. Similarly, we expandf(0, Q) in the form 
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f ( e ,  Q) = m, Q) +o(+ (2.9) 

The function f must be O(e) in order that the drop be spherical when Uo-+O. 
We now insert (2.5)-(2.8) into (2.2)-(2.4) and equate coefficients of each power 
of E in each equation. Thus, at order E - ~ ,  

VpY1 = 0 ;  (2.10) 

at order EO,  Avo-Vp0 = 0, V.V,  = O , ]  

Avi-Vp; = 0, 
v, = ( O , O ,  U )  at r = 00, 

V.V; = 0;  

at order E ,  Av,-Vp1= 0, V . V ~  = 0, 
v1=O at r = a ,  
Avi-Vp;  = 0, V.V;  = 0. 

(2.11) 

(2.12) 

The boundary conditions (2.3)-(2.4) must be examined carefully in order to 
determine the contributions at the various orders of E .  

3. Boundary conditions for the perturbed fields 
We express the boundary conditions (2.3) and (2.4) in terms of the spherical 

co-ordinates ( r ,  8, Q). Because I f 1  < 1, the terms involving the radii of curvature 
in (2.4) may be written (Landau & Lifshitz 1959, p. 239) as 

(3.1) 

(3-2) 

a/R, + a/R2 = A(r -f), 

(a/% +a/R2),=1+f = 2-  ( 2  + Aea)f+ O(fz), 

where A is the Laplacian. It follows that 

where (3.3) 

It can be shown (Wohll971) that the norrnal and tangential components of the 
velocity and stress vectors can be expressed in terms of a co-ordinate system fixed 
with respect t o  the local tangent plane of the surface of the deformed drop. 
Thus, with el and e2 representing Eulerian angles (see figure Z ) ,  

vn = v, cos el cos e2 - ve sin e2 + v, sin el cos c2, 

vtl = v, cos el sin e2 + ve cos e2 -+ v, sin el sin e2, 
(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

vt2 = - v7 sin el -I- v, GOS el, 

Ttl = ( T,, C O S ~  el - Tee + ram sin el) sin e2 cos e2 + Tre cos el(c0s2 e2 - sin2 e2) 

+ Tea sin e1(cos2 e2 - sin2 e2) + 2rra sin el cos el sin e2 cos e2, 

- 704, cos el sin e2 + rrQ cos e2(cos2 c:, - sin2 el), 

- 2( 7,s cos el + Tea sin el) sin E~ C O ~  e2 + 2 ~ , ,  sin el cosel cos2 E ~ ,  

rt2 = ( - T,, + ram) sin el cosel cos c2 + Tre sin E,  sin e2 

T,, = T ,  cos el C O S ~  e2 + Tee sin2 e2 + rma sin2 C O S ~  e2 
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i a 
FIGURE 2. Co-ordinate system fixed with respect to the local tangent plane of the surface 
of the deformed drop. First rotate in the p, (D plane through an angle el, then rotate in 
plane normal to it2 through an angle e2 to obtain this system from that fixed a t  the centroid 
of the drop. 

where (v,,V,,v,) are velocity Components and (rm, rr6, TTQ? 708, re,, T,,) are 
stress tensor components in spherical co-ordinates. The stress tensor com- 
ponents are expressed in terms of the velocity components as 

rrT = - p  + 2(av,/ar), (3.10) 

-+-+-cote ,  ) 
1 av, v, vg 

(rsine a@ r r 
rm, = -p+2  - 

- av, i av,. V ,  
r,,--+---- 

ar r s in880 r ’  

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

The velocity and stress components for the internal fluid are given by the same 
expressions with the velocity components and the pressure replaced by their 
primed counterparts. 

The deformation of the sphere is a small quantity and if the surface of the drop 
is assumed to be sufficiently smooth, it follows that the co-ordinate system of the 
local tangent plane is obtainable from the spherical co-ordinate system fixed at  
the centroid of the sphere by means of a small rotation. Therefore, we know that 
el and e2 must be small quantities. It is necessary to express them in a quantitative 
manner in terms off. To this end, we express the normal vector i, as 

af af 
IV(r -f ) I  ae a@ = i, - i,- - i, cosec 8 -+ O(f2). 

. V(r-f)  
1, = (3.16) 
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From (3.4), since el and c2 are small quantities, we obtain 
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0, = ~ p - € 2  + € ~ W Q  + O(S?) + O(S;) .  (3.17) 

Comparison of (3.16) and (3.17) shows that we must, for compatibility, require 
el, e2 and f to be related as follows: 

el = - cosec e(af/aq, e2 = af/ae. (3.18), (3.19) 

Substituting (3.18), (3.19) and (2.9) into 1:3.17), we obtain the expression for 

w , = w r + c  --wB -cosecO- ;: wa) -to(€). (3.20) 

To evaluate w, on the surface r = 1 + f = 1 + efl + . . . , we use a Taylor expansion: 

wn Ir = l+f = V n ] r =  1 +efl(avn/ar)r= 1 + o(€ )*  (3.21) 

w, in powers of e: 

{ 2 

Substituting (3.20) into (3.21), we obtain 

81, + f1 (avoelar) = [primes], 

?J1@ +f1 (a%&) = [primes], 

71r0 + f1 F+ - ( 7oW - 7 0 8 0 )  - cosec 8 - ‘Totl~i = a [primes], a70%9 afl afl 
ae a@ 

af 1 

(3.22) 

a t  r = 1, (3.26) 

Now, taking account of (2.5), we may obtain the zero- and first-order contribu- 
tions to w, I ,. = l+f, namely 

Note that all velocities on the right are now evaluated on the surface of the un- 
deformed sphere r = 1 and are expressed as spherical co-ordinate components. 
It follows in a similar manner that all the other quantities appearing in the 
boundary conditions (2.3) and (2.4) are expressed to zero and first order in e as 
follows. At order eo, 

wOr = v;, = 0, woo = who, woa = w&,, 70r0 = a&.,, 707a = a7&, at r = 1, 

(3.24) 
pL1 = 2/a at r = 1; (3.25) 

at order e, 

avo, 8% afi 
ar ae aal wlr + fl - = [primes] = - woo + cosec 0 -. woQ, 

We note that (3 .25)  shows why the term pL1 =+ 0 is needed in the expansion of 
p'.  It follows that the dimensional internal pressure of a drop in its quiescent 
spherical shape is 2 T / a .  Equations (3.24) irtvolve only the zero-order terms of 
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the expansion, and (3.27) is an equation for the deformation function fi in terms 
of quantities determined from the zero-order expansion. The function fi is 
determined as a particular solution of (3.27), subject to the conditions that the 
volume of the drop remains constant, 

(3.28) 

and that the centroid of the drop is chosen to coincide with the origin of the 
co-ordinate system, 

/02yJ;(osJ) (3.29) 
rr2sin6drd6d@ = 0, 

If (2.1) is substituted into (3.28) and (3.29), retaining only terms to first order in 
f, they become 

Io2n /o>s in~d~d@ = 0. (3.30) 

(3.31) 

To within order-e deformation, we see that the boundary conditions (2.3) and 
(2.4) expressed on the deformed interface have been transformed to the boundary 
conditions (3.24), (3.26) and (3.27) expressed on the undeformed sphere surface. 
The Stokes equations ( 2 . i l )  and (2.12), subject to the aforementioned boundary 
conditions and the supplementary conditions (3.30) and (3.31), are now tractable. 
We shall solve them for the case when U is an unbounded parabolic flow using the 
general method of Lamb (1945, p. 596). 

2n li sinBcos @ lo l o j  {sii!sin @ jsinaniinm = 0. 

4. Unbounded parabolic flow 
We now consider U t o  be an unbounded parabolic flow defined by 

upo = p + 6 x + y ( x 2 + y 2 ) ,  (4.1) 

with respect to a co-ordinate system fixed at  the centroid of the drop. Here, p, S 
and y are constants and Uo is a reference velocity. In  order to relate this to  Poise- 
uille flow in a tube, let the drop be located at  a radial distance b from the tube axis. 
Suppose that the drop is moving with dimensionless velocity co parallel to this 
axis, with respect to a co-ordinate system fixed in the tube, and in the same 
direction as the Poiseuille flow field. If R is the radial component of a cylindrical 
co-ordinate system measured from the tube axis, then the velocity of the flow 
with respect to a co-ordinate system fixed at the centroid of the drop (see figure 1) 

is U/Uo = 1 - (R/Ro)2 - c0, (4.2a) 

where R2 = (b + ax)2 + a2y2. (4.2b) 

We shall identify the incident unbounded parabolic flow (4.1) with that given by 
(4.2a). By comparing these two equations, it follows that 

( 4 . 2 ~ )  

F L M  I3 
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The zero-order velocity field satisfies the boundary condition 

vo+ k(U/U,) as r-fco, (4.3) 

where k is the unit vector in the z direction. In  this form we see that the order-@ 
velocity and pressure fields are easily obtained by summing the known solutions 
for a fluid sphere in a uniform stream, linear shear flow and quadratic shear flow, 
according to the method of Lamb (for details, see Wohl 1971). From these solu- 
tions the order-€, dimensional hydrodynamic force F, on the drop is calculated to 
be 

F, = 677puU0 [ e p + - - y ]  a+Z 2 a k. 
a+l  3 a + 1  (4.4) 

This is the drag force acting on the undeformed drop. Note that it is independent 
of the linear shear gradient S. The original assumption that the drop is in a 
steady state of motion requires that the net force on the drop be zero, or F, plus 
the body force $na3K, k equal zero. Therefore we choose c,, which heretofore has 
been arbitrary, so that this condition is satisfied, viz. 

where ko is the non-dimensional body-force parameter given by k,  = K,a2/,uU,. 
The order-e deformationfunctionf, may now be found from (3.27), using (3.10) 

and the order-€, solution. An obvious particullar solution of (3.27) which is found 
also to satisfy the subsidiary conditions (3.30) and (3.31) is 

fl = fil +fm 

where 

Here Pi and P: are associated Legendre polynomials (Jahnke & Emde 1945, 
p. 111). The above result is in agreement with that given by Hetsroni & Haber 
(1970). It is seen that to order e the deform&ion of the drop is independent of 
the uniform flow contribution to U (Saito 1913; Taylor & Acrivos 1964). 
Also, it is seen that the deformation is independent of the external body force 
acting on the drop. Therefore fl is independent of whether the drop is moving 
with the flow or held stationary. Four characteristic shapes of the drop in the x, z 
plane (@ = 0)) based on (2.1) and (4.6) with a = 0, are illustrated in figure 3. 
I n  figure 3 (a ) ,  the shape was calculated for b = 0 and y = - 0.04, for which the 
shape fi = flz. This is the shape of the drop for a/Ro = 0.2 and b = 0, when it 
is located on the tube axis. I n  figure 3 ( 4 ,  it was assumed that S = -0.2 and 
y = - 0.04. This is the shape of the drop for a/R, = 0.2 and b = $a, when it is 
located midway between the tube axis and the tube wall. The shape is dominated 
by the deformation due to linear shear, and fl M fll. I n  this case, the equation 
€or the shape takes the form r M 1 + &YPi (COS O), which differs from an ellipse by 
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FIGURE 3. Four characteristic shapes of tha deformed drop in a Poiseuille flow, calcu- 
lated according to  (4.6). It was assumed that a = 0 and (a) a/Ro = 0-2, b/R, = 0 ;  (b)  
alR, = 0.4, blR, = 0-125; (c) a/R, = b/R,  = 0.2; ( d )  a/R, = 0.2, b/R, = 0.5. 

order S2. A shape of the drop intermediate between these two extremes is shown in 
figure 3 ( b ) ,  for which S = -0.1 and y = -0.16. Such a shape is achieved for 
alRo = 0.4 with the drop located at  b = +Ka. A second intermediate shape is 
shown in figure 3 ( c ) ,  for which 8 = -0.08 and y = -0.04, which is achieved 
for a/Ro = 0.2 and b = a. 

To determine the order-s fields {vl,p,} and {vi,pi} we must solve Stokes’ equa- 
tions subject to the interface boundary conditions (3.26) at r = l, in addition to 
having v, vanish at infinity. It should be noted that, because a uniform stream 
produces no deformation of a liquid sphere, the solution for a fluid sphere in a, 
uniform stream is completely determined to any order in s by the order-@ solution. 
We shall show that the order-s solution for unbounded parabolic flow can be 
expressed as the sum of the known order-a solution for a drop in a linear shear 
flow, and the known order-s flow produced by a drop in a quadratic shear flow, 
plus an order-s field needed to satisfy the contribution in the boundary conditions 
arising from the interaction between the zero-order flow and the first-order 
deformation of the drop. This interaction does not occur when the flow profiles 
are considered separately. 

To begin we write the order-so parabolic velocity and stress fields explicitly 
13-2 
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as the sum of the order4  fields corresponding to a uniform stream ( U  = PU,), 
linear shear flow ( U  = 6Uox) and quadratic shear flow ( U  = yUo(x2 +y2)). Thus, 
we set 

(4.7) 
Wor = vg) +- v$ + ,&), 

po = p p  + p p  + p p ,  

and similarly for other velocity and stress components, where w$ and cor- 
respond to a uniform stream, linear shear h w  and quadratic shear flow for 
i = 0 , l  and 2, respectively. For the order-€ solution, it is similarly advantageous 
to separate the contributions arising from t h e  linear shear and quadratic shear 
flows considered independently. For example, let v@ and WE) represent the afore- 
mentioned flow field contributioiis to wlr. Then define the interaction contribu- 
tions wlr and glrO by the equations 

Substituting (4.8) and analogous expressions for the other first-order velocity and 
stress components into (3.26) together with 1:4.6), we find that these boundary 
conditions can be satisfied in parts as follows: 

a v g  v 1 2  (2) 

ar ae w$$)+f12- = [primes] = --woo: 

(4.9) 

(4.10) 
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Equations (4.9) and (4.10) represent the first-order boundary conditions for 
incident linear shear and quadratic shear flows, respectively, considered in- 
dependently. The solution for incident linear shear flow was given by Chaffey 
et al. (1965, 1967). The incident quadratic shear flow solution may be found in 
Wohl (1971). However, the drop does not experience any hydrodynamic force 
owing to these fields considered independently, and it is therefore not necessary 
to give them here. 

It remains to find a solution to (2.12) which satisfies (4.11) at r = 1.  Upon 
inserting the known velocity fields and deformations into (4.11), and applying 
Lamb's method of solution in a straightforward manner, it  is found that the 
interaction field may be expressed as 

(4.12) 

w1 = &r2VP-,+ 2rP-,+ +rP-3-&r2VP-,+&rP-4-&r2VP-5+$grP-5 

-&r2VPV6 +&re6 + V(@-,+ @-,+ @-,+ @-,+ @-J 
+ V X - ~  x r + V X - ~  x r, 

where Pi, Oi and xi are solid spherical harmonics defined as follows: 

(4.13) I Pi = A;riPl_,_,(cos8) cos @, 

Pi = A: ril'!-i-l (cos O), 

= BiriPLi-l (cos 0) cos @ 
for i = - 2 ,  -4, -6, 

<Di = B!riP!-i-l (cos 8 )  for i = - 3, - 5,  

x-3 = CL, r-3Pl(cos 8) sin @, x-5 = Cl,r-5 Pi (GOS 8) sin @. 

Similarly, 

(4.14) 

wi = +rzVPl - &rP1 + & rVP, - rP, + &r2VP3 - &rP3 
+i&r2VP4-&rP4+&r2VP5-&rP5 

+ V(@, + @, + Q3 + @,+ Q5)  + Vx, x r + Vx4 x r, 
5 

i=l 
p ; =  x 4, 

and 

(4.15) 
pi = AirfP: ( c o d )  cos @, QDi = BiriPi(cos8) cos 0 for i = 1,3,5,  
pi = A:riP:(cos8), Qi = B!riP:(cos8) for i = 2,4,  
2, = C$ r2Pi (cos 0) sin'@, x4 = Ci r4 Pi (cos 0) sin @ . 
The constant coefficients A;, B$ and C{ appearing in (4.13) and (4.15) can be 

determined by applying the boundary conditions (4.11) to the external and 
internal solutions (4.12) and (4.14) (for details, see Wohl 1971). The resulting 
linear equations for the 24 coefficients A { ,  B{ and C$ divide into seven independ- 
ent sets, which simplifies their solution. 

1 

5. The lift force 
To determine the hydrodynamic force on the drop of order 8, we need only 

solve for the coefficient A?,. This is so because, for approximately spherical rigid 
particles whose surface is given by (2.1), the additions to the force and torque 
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on the particle which are proportional to the deformation are given, respectively, 
by the expressions (Brenner 1964) 

F, = - 477,~~~. U, a V  ( r3P-,), (5.1) 

rl = - 8np~u,a2~(~3X-,). ( 5 4  

The force F, is additional to the zero-order force F, given by equation (4.4). There 
is no torque on the drop to order eo7 and because = 0,  according to (4.13) there 
is also no torque on the drop to order e. Upon substituting the expression for P-, 
from (4.13) into (5.1), we obtain the result 

F, = - 4n,ueU,uAt2i. 

The calculated expression for A?, is 

57 (a+2) 
A:, = PS - 3 F,, - ~5'98 F,, - dy 9; F12, 

160 a 
where 

It is observed from (5.4) and (5.5) that the quantities containing F,,, F,, and F,, 
which contribute to F, arise, respectively, fiom interactions between (u) the lag 
velocity p and the linear shear deformation f L17 ( b )  the quadratic shear gradient y 
and f,,, and (c) the linear shear gradient d and the quadratic shear deformation f12. 

Upon insertion of ( 4 . 2 ~ )  and (4.5) into (5.4L), we find that 

F, = +$n,~eU,(n/R,)~ b(Fl0 + F,, + FI2) i .  (5.6) 

The expression (5.6) for F,, which is new, is the main result of this paper. The 
force F, is a lift force, because its direction I!S orthogonal to the direction of the 
undisturbed flow a t  infinity. The magnitude and algebraic sign of F, depend on 
the sum of the coefficients F,,, F,, and F12, which in turn depend only on the 
viscosity-ratio parameter a and the dimensionless parameter k,  Rilu2. The pre- 
sence of the latter parsmeter implies that the contribution to F, due t o  the body 
force is negligible compared with that due f,o the deformation when k, < a2/Rt 
and is dominant when k, 9 u2/R$. When R,/U -+ 00, the body-force contribution 
does not become infinite and in fact vanishes, because of the factor d / R $  appear- 
ing in the expression (5.6) for F,. The coefficients and their sum are plotted against 
cc in figure 4 for neutrally buoyant drops, when k, is zero. It is seen that F,, is 
always positive, so that the contribution of F,, to the lift force is always in the 
outward radial direction for all values of a. The term F,, changes sign from nega- 
tive to  positive as a increases, while F,, is always negative. Moreover, 

4 0  + Fll + Fl, 
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FIGURE 4. Components of the force F,, defined by (5.5) and (5.6), with the body-force 
parameter k, = 0,  are shown as a function of the viscosity parameter a. Note that the 

magnitude of the force F,, which is proportional to F,,, is always negative. The insert 

displays the dependence of the components P I ,  for u 2 5. The limit u + cx) represents 
the fluid drop becoming rigid. 

U 

2 

n=O 

is always negative, so that the force F, on a neutrally buoyant drop always points 
towards the flow axis. For small a, the coefficient F,, makes the largest contribu- 
tion to the lift force. 

Haber & Hetsroni (1971), on the basis of Cox's procedure, have also calculated 
independently the force F,. Their result is expressed as a sum of two terms, one 
proportional to our PS and another proportional to our Sy. Thus, a direct com- 
parison can be made between our results for F,,,, and for the sum F,, -t F12. When 
their expression for PI,, is compared with ours, it  is found that the first four factors 
on the right-hand side in (5.5) are in agreement, but they obtained the result 
a2 + a + Q instead of the last factor. Their expression equivalent to  F,, + I?,, 
is expressed in our notation, to two decimal places, as 

- 1*50a3 - 0 . 9 9 ~ ~  - 1 * 1 0 ~  - 1.22. 

According to (5.5) the sum F,, + Flz is given t o  two decimal places by 

- 2 * 5 1 ~ ~ ~ + 3 - 6 7 a ~ -  1 9 . 3 7 ~ -  21.21. 

Thus we see that the theoretical results are in significant disagreement. The most 
likely source of this disagreement appears to be algebraic error. 

To provide a test of our results, we have examined in $8  the experimental 
observations of Goldsmith & Mason (1962) of the motion of neutrally buoyant 
drops in Poiseuille flow, for which cc = 0-0002. The agreement between the ex- 
perimental observations and the theoretically derived motion of a drop based 
on the force (5.6) tends to support the present results. 
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6.  The rigid-body limit a --f co 
A casual iiispection of (2.4) in conjunction. with (3.2) might lead one to infer 

that the deformation can no longer be small in the limit a -+ a3 because the term 
ear; becomes singular. However, it is importitnt to bear in mind that, for a given 
incident flow, rk will depend on the parameter a, and therefore a more careful 
investigation of the limiting process is needed. 

To this end, appealing to the primed counherpart of (3.9), together with (2 .8 ) )  
(2.9)) (3.18), (3.19) and (3.25), we observe th:Lt 

rk = E - ~ ( Z / ~ )  + rAn + er;, + ~ ( e ) ,  (6.1) 
where 

with analogous expressions for the internal shear stresses T; via (3.7) and (3.8). 
It is tacitly assumed that the order-@ and order-el normal and tangential stress 
contributions are themselves O(a-l), if the solution is to be valid when a = 0(c1). 
However, for a parabolic flow, it is found by airect computation (see Wohl 1971) 
that rkn is O(a-l), but rin = O(1). Furthermore, ria would be O(a-l) if the 
incident linear shear were null. Similarly, all the internal tangential stress 
components for a parabolic flow to order eo and for a quadratic shear to order 
E are O(a-l). But the internal tangential stress components to order e for 
linear shear are O(1). Thus, the shear stress boundary condition in (2.3) and 
Laplace's equation (2.4) along with (3.2) cannot be satisfied to order e, when 
a = O(s-l), for anincident linear shear flow. However, the solution for an incident 
parabolic flow is valid to order €0 as a -+ GO, and it is also valid to order E as a -+ GO 

provided that the linear shear portion of the incident parabolic flow field is set 
equal to  zero. 

More generally, for flows in which a ~ :  and acrk remain bounded as CL --f co, it is 
valid to consider the solutions for the flow and the resultant forces on the drop 
in the limit a -+ GO. The deformed drop then becomes a deformed rigid particle 
with a given orientation with respect to the incident flow. It is therefore possible 
to make comparison with known solutions for the Stokes flow past arigid body, as 
well as infer some new results. I n  making this comparison, it is important to 
realize that we must compare our solution with that for a rigid body of the same 
shape as the deformed sphere, for which the external torque equals zero. I n  the 
remainder of this section, the body force on the drop will be assumed to be 
absent. 

For example, we consider the order-eO s0lUl;ion in the special case when the 
incident flow is just a linear shear, so that U = (0, 0,6x). We find that the flow 
inside the liquid sphere is given by 

V(xx)  - J(Vy) x r] . (6.3) r2V(xz) - - r(m) --- 
1 3 [ 84(:+ 1) a + l  q% + I)  

v;, = 6 

To this order the shape of the drop rema.ins spherical. In  the limit as a --f CO, the 
internal velocity field becomes 

v ' - _ -  (1 - p ( z , o ,  - x). (6.4) 
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FIGURE 5 .  The shape of a rigid spheroid accordingto (6.9), with = 1%-. This is the shape 
of a fluid sphere deformed by a linear show flow, in the limit as the viscosity of the drop 
becomes infinite. 

The conditions for a fluid motion to be identified as a rigid-body motion are 
that its shear stresses and divergence vanish, and it is easily verified that v(, 
satisfies these conditions in the limit a + 00. By considering the curl of vi in 
this limit, it is seen that 

v x v; = (0, - $8, O ) ,  a + Go. (6.5) 

This is recognized to be a rigid-body rotation, equal to $V x U, which is the rota- 
tional velocity that a rigid sphere experiences in the incident shear flow U 
(Einstein 1906). 

As a second example, we consider the solution to order so for the case when the 
incident flow consists of a uniform flow plus a linear shear flow. In  this case, too, 
the interior flow satisfies the conditions of rigid-body motion in the limit a -+ co. 
The force on the drop becomes 

Furthermore, the drop is deformed by the shear into the spheroid defined by 

a+= 
01+1 

(6.7) r = 1 + & S A  cos @Pi(cos8). 

It is important to recognize here that the order-s deformation is determined by 
the order-so solution. This deformation is different from that calculated by Taylor 
(1934) ,  which is that which would be obtained if a small parameter expansion 
were made in terms of 01-1, where a 9 1 and s = O(1) (Cox 1969). Thus (6.7),  
which is valid for all a, is complementary to Taylor’s result. In the rigid-body 
limit a + co, F, becomes 

The equation for the shape of the deformed sphere becomes 

F, = -g7r,usUoSai. (6.8) 

(6.9) r = i + $$s8 cos @,Pi(cos O), 
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and is illustrated by figure 5 for @ = 0 and = &. The force (6.8) is the same 
as the lateral force (cf. Happel & Brenner 3965, p. 213) produced on a rigid 
spheroid whose shape is given by (6.9) settling slowly in a viscous fluid. This 
agreement is to be expected because a linear shear flow produces no force on a 
drop to order s. 

Finally, we note that the order-s solution for uniform plus quadratic shear 
flow (0, 0,/3+y(x2 +y2)), which is valid in the limit a: -+ co, predicts that the 
order-s deformation of the resultant rigid body causes no order-s correction to  
the order-so drag. Thus from (4.4), with a -+ a, the order-e drag force on the drop 
is 

F, = ~ ~ , U U U , ( / ~ + $ ~ ) ~ + O ( C X - ~ ) + O ( C ) .  (6.10) 

The shape of the drop, according to (4.6), is 

r = 1-11 osyPg(cOS 8) + O(a-l) ,  (6.11) 

and is illustrated in figure 6 for = - 0.4. [t is readily verified that the diver- 
gence and shear stresses of the interior flow field vanish in the limit a: +- co. Thus, 
we infer the new result that a rigid spheroid whose shape is given by (6.11) 
experiences a drag force given by (6.10) wherl placed in a uniform flow. There is 
of course no lift force in this case because the incident flow is totally symmetric 
with respect to the z axis. 

7. The trajectory of the drop 
We shall now calculate the trajectory of it drop in an unbounded parabolic 

flow subject to the lift force F,, where F, is given by (5.6). I ts  radial velocity 
db ld t  can be determined by equating the drag force 

FIGURE 6. The shape of a deformed rigid sphere a-ccording to (6.11), with EES = -0-4. 
This is the shape of a fluid sphere deformed by a quadratic shear flow, in the limit as the 
viscosity of the drop becomes infinite. 
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FIGURE 7.  The trajectories of a drop in Poiseuille flow and subject to a body force, accord- 
ing to (7.6), with a = 0, 6 = 0.01, a/R, = 0.1 and b/R,  = 0.5. The labels denote various 
values of the body-force parameter k,  = Koa2/,uUo. The tube axis is represented by the 
line b = 0. The arrowheads indicate the direction of migration as t + co. Note that, for 
k, > - 0.084, the drop approaches the tube axis asymptotically, and for k,, < - 0.084, 
the drop travels outwards towards the wall. 

to F,. We are justified in applying the drag formula of Hadamard & Rybczynski 
for a liquid sphere because the deformation makes a negligible contribution to the 
drag-force coefficient, which is of order e, at most. Consequently, because F, is 
of order e, the correction to dbld t  would be of order E ~ ,  a t  most, and can therefore 
be neglected. Thus, in dimensional co-ordinates, 

U, u3h 
F ,  

where F is a function of CI. and k,Rg/a2 defined by 

- -&- 
db _ -  
at R;: 

19 a + l  '2 
F =  -- (-) C FIR. 

60 a+$ 

Integration of (7 .1)  leads to  the result 

b = hle-t'7, r = R~/e<Jou3F, (7.31, (7 .4)  

where b, is the initial position of the drop. 

given by (4.5), by dbldt, given in (7 .1) .  Thus, 
To obtain the trajectory of the drop, divide the axial velocity dzldt = Uoco, 
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For blb, < 1, we may drop the last term on the right-hand side, so that (7.6) may 
be written as 

where zo is defined by 
b z b, exp [ - zl;:,], (7 .7)  

(7.8) 

Because we have neglected wall effects in our calculation of F,, we may reasonably 
expect the above results to  be applicable for tubes and drops for which a < R,, 
so that the wall may be considered to be 'far away' from the drop. 

Theoretical curves based on (7.6) are shown in figure 7 for a = 0 and the 
particular choice of the values of the parameters 

e = 0.01, a/Ro = 0.1 and bJR,  = 0.5, 

for various values of the dimensionless body-f'orce parameter k,. These trajec- 
tories show that the drop may move inwards or outwards. The direction of 
migration as t -+ 00 for the various values of k, can be determined by inspection 
of (7.1) and (4.5). For k,  > -0.084 (to three decimal places), and in particular 
when there is no body force (k, = 0 ) ,  the drop moves in the positive-z direction 
and approaches the tube axis (b = 0) asymptoi5ically. When k, = -0.084, there 
is no radial migration, and the particle goes to infinity in the positive-z direction 
along the line b = b,. For - 3  < k, < -0.084, the drop moves initially in the 
positive-z direction and radially outwards. If the flow were actually unbounded, 
the particle would eventually go to infinity in the negative z-direction, but 
in an actual tube flow, its trajectory is intl3rcepted by the tube wall. For 
k, < - 3, the trajectories are always in the negative z direction and radially 
outwards. 

These curves are completely at variance with a similar set of curves presented 
by Haber & Hetsroni (1971), based on their derived lift force. This disagreement 
is due not  only to the  difference in the theoretical value of the magnitude of F,, 
but also to an error in sign in equating the lift force to the drag force in the radial 
direction (their equation (30) et seq.). 

8. Comparison with experiment 
Goldsmith & Mason (1962) have experimentally observed the migration 

velocity and trajectory of neutrally buoyant liquid drops in a circular tube. 
We shall compare our theoretical results with their experimental data. They 
observed the radial position b of the drop as a fiinction of the time, for the para- 
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FIGURE 8. (a) Radial migration of a neutrally buoyant drop in Poiseuille flow, as observed 
by Goldsmith & Mason (1962). The curves labelled 1-4 correspond to cases 1-4 of $8. The 
ordinate labelled r is the same as the radial co-ordinate position b in the text. ( b )  Migration 
rate of a neutrally buoyant drop in Poiseuille flow, based on (7.3). The values of  b, (cm) and 
T (5) for the various curves are as follows: 1, b, = 0.289, T = 5.46 x lo4; 2, b,  = 0.296, 
T = 1.08 x 104; 3, b, = 0.268, T = 4.93 x los; 4, b, = 0.261, T = 1.06 x lo3; 5, b, = 0.292, 
T = 4.29 x lo2. The values of 6 ,  and T for curves 1-4 were chosen to be the same as for the 
experimental curves shown in (a) .  

meter values a = 0.2 x 
and for the following cases: 

p = 50*3P, R, = 0.4cm and T = 29-0 dyn em-,, 

(I)  Q = 0.0356 em s-l, a = 0.0175 em, 6 ,  = 0.289 em; 

(2) Q = 0.0356 em3 s-l, a = 0-0300 em, b, = 0.296 em; 

(3) Q = 0.0356 em3 s-l, a = 0.0390 em, b, = 0.268 em; 

(4) Q = 0 . 0 7 1 2 ~ m ~ s - ~ ,  a = 0-0410cm, b, = 0.261cm; 

( 5 )  Q = 0.142cm3s-l, a = 0.0350cm, b, = 0.292cm; 

where Q is the volumetric flow rate in Poiseuille flow; Q = nU,Rg. These data 
are those of system 6 of Goldsmith & Mason. The radial trajectories shown in 
figure 8 ( a )  are taken from Goldsmith & Mason (1962). The trajectories are seen 
to be directed inwards in all cases. I n  figure 8 (b)  we have plotted the corresponding 
theoretical curves, for the same choice of parameter values, based on (7.3) with 
k, = 0. A comparison of the two sets of curves in figures 8 (a)  and (b)  shows that 
they are in qualitative agreement. Moreover, dependence of the radial velocity 
on the factor Uga3b/R& predicted by (7.1), has been observed experimentally 
(Goldsmith & Mason 1962). 

A comparison is made in table I between the observed and calculated values 
of log (b/b,) ( ~ R 3 ~ / 1 6 Q ~ a ~ t .  According to (7.3) and (7.4), this quantity equals 
-,uF/16T. In  the table the observed values are quoted from Goldsmith & Mason, 
and are seen to  be in general agreement with the theoretical values. 

For the same cases, Goldsmith & Mason also observed the radial position of 
the drop as a function of selected longitudinal positions. These observation 
points are displayed in figure 9, together with the theoretical trajectories based 
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log (b/b,) (nR$2/16&ZaSt 
= -p3'/16T 
i 

System P T a: Observed Calculated 

6 50.3 25.0 0.2 x 10-3 - 1.6 - 1.3 
7 50.3 7.3 0.2 )( 10-3 - 2.6 - 4.3 
8 50.3 5.0 1.39 - 1.6 - 1.1 

TABLE 1 .  Values of the quantity log (b/b,)  (7rR3z/16Q2a3t observed by Goldsmith & Mason 
(1962) in their systems 6, 7 and 8, and calculated values based on (7.3), with ko = 0. Here 
Q is the volumetric flow rate nuo Ri. 

50 100 150 200 

(em) 

FIGURE 9. Trajectories of a neutrally buoyant drop in Poiseuille flow, based on (7.6) 
with k, = 0. The ordinate b measures the distance (of the drop from the tube axis, and the 
abscissa z measures distance down the tube in the flow direction. The labels refer to the 
five cases observed by Goldsmith & Mason. The observed values of b based on their 
experimental data, for z = 50,100, 150 and 200 em, are also indicated for the sake of com- 
parison. 

on (7.6). As pointed out in the previous section, neutrally buoyant drops are 
predicted always to move radia.lly inwards, and the observed trajectories of 
Goldsmith & Mason are in agreement with this prediction. These observations 
are also in agreement with other experimental observations (Forgacs, Robertson 
& Mason 1958; Goldsmith &Mason 1962; Karnis & Mason 1967) on various kinds 
of neutrally buoyant deformable drops suspended in viscous fluids undergoing 
Poiseuille flow through circular tubes. 

When the theoretical curves in figure 9 are compared quantitatively with the 
experimental observations, it is seen that thore is excellent agreement between 
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theory and experiment in case 1, for which the radial velocity dbldt is seen in figure 
8 (a) to have the smallest value. The discrepancy between theory and experiment 
is seen to be greater, as the inward radial velocity becomes greater, successively 
in cases 2-5. The reader should bear in mind that the magnitude of the discrep- 
ancy between theory and experiment displayed in figure 9 is exaggerated by the 
scales of the axes. This discrepancy between theory and experiment remains to 
be explained. Thereis a variety of possible theoreticalreasonsfor it, such as effects 
of second order in 8, the effect of the wall and (nonlinear) inertial effects, all of 
which have been neglected in the present theory. 
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